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Abstract

k-Terminal Reliability of Communication Networks

By
Wael Hasan Saafin

Supervisor

Dr. Bassam Z. Kahhaleh

Co-Supervisor

Prof. Jamil Ayoub

One of the important fields in communication networks is the reliability of
these networks. The k-terminal reliability is our main concern in this thesis.
It is the probability of finding a communication path among some specified
set of terminals that should be connected with one another.

There are two general approaches to solve this problem; exact and
approximate. Exact solution usually can not be applied except for small
networks due to the impractical time it takes to obtain a solution.

Two algorithms that are of the approximation approach are suggested in
this thesis. They introduce a solution for a generic network in feasible and
practical time, while achieving good accuracy. In these two algorithms,
Monte Carlo simulation is utilized, and a sufficient number of samples are
used to get the reliability measure. In each considered sample, some links
are assumed to fail depending on a given probability. For a given sample
network, a search method is used to check if the k-terminal nodes are

connected with each other by working links or not. In the first algorithm,
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ALGI , We utilize the depth-ﬁrst search, while in the second algorithm,

ALG2, breadth-first search is utilized to check for the connectedness of the
k-terminal nodes.

We propose a general solution for the k-terminal reliability problem
without any restriction on the size or the topology of the network under

study.
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Chapter 1
INTRODUCTION

In this chapter a brief introduction is given as a background for this study.
Section 1.1 starts with communication netv;(orks, then some methods of
mathematical modeling are stated. Section 1.2 covers the k-terminal
reliability issue, while Section 1.3 states the k-terminal reliability problem.
Finally, Section 1.4 covers some theoretical concepts required by the

following chapters.

1.1 Communication Networks :

A communication network consists of transmission paths that connect

various nodes such as switching centers, concentrators and terminals. This

network can be represented by a graph, which 1s independent of the nature

of communication paths (radio, cable,...etc.) and independent of the
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functions accomplished at the nodes (switching, concentration, information

entry, information receipt,...etc.).

A graph may be considered to be directed or undirected depending on the
direction of information flow through its edges or links. A hnk is said to be
undirected if information flow can be in both directions, and is represented
by a line without arrows, connecting two terminal nodes. If information flow
is dictated to one direction through each link of the graph then the links,
and hence the whole graph, are said to be directed with an arrow added on
each edge so as to indicate direction of information flow.

This thesis is concemed with hnear, simple and undirected graphs. A
graph is said to be simple if it has neither self-loops; i.e no edge has the
same vertex as both of its end vertices, nor parallel edges, i.e no two edges
have the same end vertices.

An examnle of a linear, simple and undirected graph 1s drawn m Figure
1.1. This network contains seven terminals or nodes that are connected in
the shown manner by ten links. As a graph, it contains seven vertices that
are connected, in the shown manner, by ten edges. Clearly, this graph is
undirected, since no arrows are drawn, and it is simple.

Graphs are named by giving both the number of vertices and edges. It is
written as G=(V,E) where V and E are the number of vertices and edges
respectively. In our example, in Figure 1.1, the graph is labeled G=(7,10).
In this figure, the wvertices , v; , are numbered from / to 7 for future
references.

An edge e, may be numbered independently of the vertices, or it may be
represented as an unordered pair (v;,v; ) where v; and v; are called the end

vertices of ;. In Figure 1.1 edge &8 has vertices / and 7 as end vertices, i.e

€g = (V], Vy) = (V7, V])
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Figure 1.1: A linear, simple, undirected graph, G = (7,10)

The previous graphical representation is an important step in formulating
the mathematical mode! of a communication network. A trivial
representation would be
G={e;, e e;3,., €}
where E is the number of edges. Each edge e, has two end vertices: one of
them is stored as the kth entry of one array say f array, and the other one is
stored as the kth entry of a second array say ¢ array. The previous example
is then given by:

G ={e;, e, e;3,..,¢€15)}

={1,2345067289 10}
f=1{1,234566177 Eodnal
t = {2,3,456,17,7 2 3}

Note that the first array consists of only a counter that counts from 7 to E.
Hence, mathematically we can refer only to f and ¢ arrays so as to get a
complete information about the concemed graph. Also, it makes no
difference for an edge which one of its vertices goes to f and which one
goes to £. What is important is to write the end vertices of an edge e as the

kth entry of both fand ¢. This is a result of the undirectivity of the graph.

PP IR IR S
Lo e )
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Another mathematical representation 5 fhe  incidence-matrix

representation. The incidence matrix contains only two possible elements:
one or zero, i.e. it is a binary matrix or (0,/)-matrix. Rows denote the
vertices while columns denote the edges of the graph. The vertex v; is said
to be incident to the edge ¢; if v; is an end vertex of the edge ¢, . In our
example, v, and ey are incident to each other. If there are three edges e, e,
, and e, incident to a vertex vy then the kth row of the incidence matrix will
be all zeros except for the mth, nth and oth columns, which will have the
value of one. In general

A=[ay;]

_ {l if edge e, is incident on verfex v,
ij =

0  otherwise

Back to our example, its incidence matrix 4(G) would be:

€ €; €3 ey €s €s €y €sg €9 €10
v [t 0 o o o 1 o 1 0o o0 ]
v, |1 1 o0 o o0 0 O 0 1 0
vi |0 1 1 o0 o0 o o0 0 o0 1
v |0 0 1 1 o0 0 0 0 o0 0
vs O 0 0 1 1 0 0 0 0 0
v [0 0 0 0 1 1 1 0 o0 0
vv 10 0 0 0 0 0 1 1 1 1

Note that every column of A has exactly two ones, since each edge is
connecting two vertices only. The number of ones in a given row equals the
degree of the corresponding vertex, i.e. the number of edges incident to that

vertex. Note that the dimension of the incidence matrix is VxE.
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Another important matrix representation of graphs is based on the idea of
adjacency between vertices. Two vertices v; and v; are said to be adjacent
if they are both incident on one common edge e, that is v; and v; are the
end vertices of the edge e; . In our example, vs and v; are adjacent since
they are the end vertices of edge e;. A matrix representation of this type is
called the adjacency matrix or connection matrix. It is a Vx} square matrix.
In general;

X=[xi;]
where

x,.j

1 if thereis an edge between vertices v, and v;
0 otherwise

Now back to our example, the adjacency matrix is

vy Vs V3 V4 Vs Vs vz
vy 0 1 0 0 0 1 1]
Vs 1 0 1 0 0 0 1
Vs 0 1 0 1 0 0 1
V4 0 0 1 0 1 0 0
Vs 0 0 0 1 0 1 0
Ve 1 0 0 0 1 0 1
Vs 1 1 1 0 0 1 0

The adjacency matrix is symmetrical as a result of the undirectivity of its
graph. Also it has zero diagonal entries due to the simplicity of its graph, i.e.
no self-loops and no parallel edges. The number of ones in a row, or a
column, is equal to the degree of the corresponding vertex. For example,
vertex v; has a degree of four since four ones can be seen in the 7th row or

the 7th column due to symmetry.
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There are other matrix representations of graphs. However in this thesis,
the above mentioned representations are sufficient. Given any one of these
matrix representations, it is possible to construct a geometric graph G
without any ambiguity, and having the same information as its mathematical
representation. However, some applications may prefer one representation

over the others, i.e. for simpler programming, to get better performance, etc.

1.2 Reliability of Communication Networks:

An important step when designing a communication network is to
calculate its expected reliability, that is the survivability of data when
transferred through this network. Also, it is important for improving existing
working networks, since the reliability analysis would give the designer
indicative information such as where to add new links or help to change the
network topology so as to get better performance.

Reliability problems are of two major types: deterministic and
probabilistic. In deterministic reliability, no probability of failure is assigned
to links or nodes, and we are concerned with some sets of nodes or links
that may affect the network functionality. This type of problems measures
the cohesion and the connectivity of networks (Cravis, 1981).

Probabilistic reliability problems assume that the links or nodes may fail
at random. The reliability here depends on both topology of the specified
network and the individual reliability of each link and node in the network.

Another classification of reliability problems that depends on the terminals
or nodes of interest is given as follows

o Terminal-pair reliability
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e All-terminal reliability
o k-terminal reliability
The terminal-pair, or two-terminal, reliability problem is to determine the
probability of successful communication between two specified nodes in a
network, given the probability of success for each communication link in the
network.

Computing the reliability of a generic network is computationally difficult,
and an exact solution is usually unattainable. Faced with this computational
difficulty, an assumption is uvsually made that all types of components are
perfectly reliable except for one, and usually the link component is assumed
to be that one. In this thesis, references to some previously published
solutions are given for the purpose of comparing them to existing algorithms.

In the all-terminal, or overall terminal, reliability problem, the objective is
to find the probability that every pair of nodes can communicate with each
other using working links, assuming perfectly reliable nodes, as in the case
of terminal-pair problem, and given the reliability of each communication
link in the network. Such a measure is needed in some networks where all
terminals must be in touch with one another all the time. The problem of
optimum design of link topology is then to maximize reliability or to
minimize the cost, both requiring to calculate or estimate the network

reliability.

1.3 k-Terminal Reliability:

The k-terminal reliability problem is the general case of the three major

problems. Its solution includes solutions for both terminal-pair and all-
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terminal problems, In the k-terminal problem, a network is given along with

the reliability of each communication link. Nodes are assumed to be
perfectly reliable, as well as the & terminals of special interest. The
requirement is to calculate the probability of successful communication
between any two terminals from the specified set of k terminals. Note that if
the set of k terminals includes only two elements then the problem becomes
a terminal-pair problem, while if the set of k terminals includes all the
terminals in the network then the k-terminal problem becomes an all-
terminal reliability problem.

For example, Figure 1.2(a) shows a graph G that represents the original
communication network. It has 9 vertices and 13 edges hence G = (9,13),
the reliability of each edge e; in E is given and it is equal to 0.9.

In this example the network edges have the same reliability. Even in the
general case where edges have different edge reliabilities, the used
methodology remains the same. For this example, the k terminals of interest
are specified to be vertices one, four and nine.

What is required now is to calculate the probability of nodes one, four and
nine being connected together via any working edges independent of the
states of other nodes and edges that may not affect this connection.
Naturally, investigating the graphical model, one may find many paths that
connect the k nodes together in a single tree. Two of these trees are shown
in Figure 1.2(b). If, for example, the edges found in one of these two trees
have reliability of one, then the k-terminal reliability is one irrespective of,
say edge (1,6). However, a 100% reliability is only theoretical and is stated
here only to clarify the idea.
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O not a k terminal

.k terminal

(b)

Figure 1.2; k-Terminal reliability problem
(a) G=(9,13), a network of 3 k-terminal nodes (1,4 and 9)

(b) two possible paths conneting the k-terminal nodes.

1.4 Theoretical Concepts of a Graph:

Before stating any solution methods, there are many definitions and

concepts that should be firstly clarified.
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A labeled graph is a graph in which each vertex is assigned a unique name

or label. Two vertices v; and v; are said to be adjacent if they are the end
vertices of some edge ¢; in G, i.e they are adjacent if there is an edge
connecting them together. Two edges e; and ¢; are said to be adjacent if
they share an end vertex v;, i.e. they are adjacent if &; = (V,, ,vx) and ¢; =
(v.,vi) irrespective of the vertices v,, and v, .

A vertex v; and an edge ¢; are said to be incident with, or on to, each
other if v; is an end vertex of the edge ¢;, i.e. ¢;= (V;,vn) irTespective of the
vertex v, .

A walk, through a graph, is a finite alternating sequence of vertices and
edges beginning and ending with vertices, such that each edge is incident
with the vertices preceding and following it. A special case of a walk is
when no vertex appears more than once. This special walk is called a path,
or simple path, whose length is the number of edges in that path. A graph is
connected if there is at least one path between every pair of vertices in G. A
graph may have different paths with different lengths while connecting the
same set of nodes. A path of minimum number of edges is called a shortest-
path that interconnects some set of vertices.

A tree is a connected graph without any circuits, 1.e. it does not have any
closed walks in which there is at least one vertex that appears more than
once. By its nature, there is one and only one path between every pair of
vertices in a tree T. Clearly, a tree of (n) vertices has (n-7) edges.

A binary tree is defined as a tree in which there is exactly one vertex of
degree two while every other vertex is of degree one or three. The vertex of
degree two is the root of the tree. Note that the degree of a vertex is equal to
the number of edges incident to it. In a binary tree, a vertex v; is said to be at

level I; if v; is at a distance of /; from the root while the root is assumed to
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be at level zero.The distance between two levels is the minimum number of
edges connecting between them (Deo, 1990).

A spanning tree 7, is a tree of a connected graph G provided that T
contains all vertices of G. Note that a spanning tree is only defined for a
connected graph since a tree is always connected while in a disconnected
graph of V vertices, one cannot find a connected subgraph with V vertices.
Finding a spanning tree of a connected graph is done by simply deleting an
edge from each circuit, if any, found in the graph, leaving a connected,
circuit-free graph that contains all the vertices of G.

A disconnected graph consists of two or more connected subgraphs, each
of these connected subgraphs is called a component.

A cut set i1s a set of edges whose removal from an originally connected
graph G, leaves it disconnected, or it is the minimum set of edges in a
connected graph whose removal increases the number of components in the

graph by one.
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Chapter 2
SEARCH METHODS

This chapter covers the main search methods that are utilized in this thesis.
These search methods are needed so as to get around the fact that exact
solutions for reliability problem are, in general, not feasible to get, and
approximation methods depend completely on these methods. Binary search
is investigated in Section 2.1, depth-first search and breadth-first search are
discussed in Sections 2.2 and 2.3, respectively. Backtracking which may be
considered as a help tool is studied in Section 2.4.

In Section 2.5 some previous studies are discussed including both exact
and approximation types. This chapter is intended to provide the required
background necessary to investigate and discuss the proposed algorithms

which are stated in the next chapter.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



|

mx L = (n-1)/2
A pendant vertex is a vertex that hasn't any adjacent vertices of higher
levels in the binary tree. In analysis of algorithms, we are generally
interested in computing the sum of the levels of all pendant vertices. This
quantity, known as the path length of a tree, can be defined as the sum of the
path lengths from the root to all pendant vertices.
The importance of the path length of a tree lies in the fact that this quantity
is often directly related to the execution time of an algorithm; an important

factor in choosing the best algorithm to follow.

2.2 Depth-First Search:

Depth-first search is a technique that is widely used for finding solutions
to problems in combinatorial theory and artificial intelligence (Tarjan, 1972).
Suppose G is a graph which we wish to explore. Initially, all the vertices of
G are unexplored. We start from some vertex of G and choose an edge, from
the set of incident edges, to follow. Traversing this edge leads to a new
vertex. We continue in this way; and at each step we traverse an unexplored
edge leading from an already reached vertex. A traversed edge leads to
some vertex, either new or already reached before. Whenever we run out of
edges leading from old vertices, we choose some unreached vertex, if any
exists, and begin a new exploration from this new vertex. Eventually, we
will traverse all the edges of G each exactly once. Such a process is called a
search of G.
There are many ways of searching a graph, depending on the way in which

search edges are selected. Consider the following choice rule:
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when selecting an edge to traverse, always choose an edge

emanating from the vertex most recently reached.

A search which uses this rule is called a depth-first search. The set of old
vertices with possibly unexplored incident edges may be stored on a stack.
Let us take G as a connected undirected graph. A search of G imposes a
direction on each edge of G, defined by the direction in which the edge is
traversed when the search is performed. Thus G is converted into a directed
graph G'. The set of edges which lead to a new vertex when traversed dunng
the search defines a spanning tree of G'. All edges that make up the palm
tree of the original graph are usually called fronds of G, while each edge
(v,w), which is not part of the spanning tree, connects vertex v to one of its
ancestors w, i.e. a vertex that has been previously visited in the search
method.
The previous statements may be translated into the following algorithm.

Input: An undirected graph G = (V,E) represented by the adjacency set
for each vertex v e V.
Output: A partition of E into a set T of tree edges (v—w)

and a set B of back edges (v-—w).

Stepl: letv; =1

Step2: for an appropriate node w; that lies in the adjacency list of v;,
assume w;; = w; ;= w; then do steps 3 and 4.

Step3: if w; is not yet numbered
then construct v; -»w;; and number w; .

Step4: else construct v; -—w;; .

Step5: let v; = w;;

Step6: If yet there is an unnumbered vertex then go to step 2.

Step7: stop.
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Figure 2.1 shows an example to clarify the algorithm.

(a} (b)

Figure 2.1: Depth-first search (a) G = (6,7). (b) DFS palm tree, number in [ ] specify the

vertex number as search procedure done

Let us start at a vertex A, and give it the number v = 1. At this node we
will choose one of the adjacent vertices , 1.e. one of (4,B) and (4,F) edges.
Let us take the former one to construct the first v— w, leading to vertex B at
which v should be updated. At this vertex, three new possible incident edges
may be followed. Let us choose edge (B,C) leading to vertex C. At this
vertex, there are two adjacent vertices: the first is still unnumbered and can
be reached through edge (C,D), and the other is already numbered which is
vertex B. Edge C—D is constructed and the new vertex we will be at is D.

Now at vertex D only one new incident edge exists leading to the already
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numbered vertex 5 50 D-—28 is construeted, Hence B is an ancestor of

vertex D. We still at vertex D where there are no incident edges, so we
should go back through our spanning tree to the last numbered vertex C
which also hasn't any new incident edges. Continue to vertex B where there
is a new and sufficient edge (B,E) which is constructed leading to vertex E.
Then E—F and F-—4 in the same manner.

A brief study of both the algorithm and the figure shows that the algorithm
must terminate because each vertex can be numbered only once. Also, each
edge in the graph is explored at most twice; a property that makes the search
time linear in ¥ and E. The edges v—w run from smaller numbered vertices
to larger numbered ones. The edges v-—w run from larger numbered
vertices to smaller numbered ones. If edge v-—w 1s constructed, edge w—v
is not constructed, and edge v-—w is not constructed later, because of the
test performed in step 3. Thus each edge in the original graph is directed in
one and only one direction.

In this thesis, the depth-first search method is utilized to develop an
algorithm that finds the k-terminal reliability. This algorithm, named ALGI,

is investigated in Chapter 3.

2.3 Breadth-First Search:

An opposite approach to the depth-first search method is the breadth-first
search, which tries to find the shortest path between two specified
~ terminals.

Initially, all vertices of the given graph G are unexplored. we start from

some vertex of G and scan all edges incident on this vertex, then move to an
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adjacent vertex . At the new vertex we scan all the incident edges and so on

until all vertices in the graph are scanned or searched. Unlike depth-first
search, breadth-first search is not naturally recursive. Moreover, in breadth-
first search each vertex is visited only once. Thus, if the target of the search
is to determine if two terminals are connected or not then this search follows
the shortest path, i.e. the minimum number of edges between the two
terminals of interest. As is the case in depth-first search, breadth-first search
is carried out once for each connected component of the graph. The

following algorithm is based on the breadth-first search method.

Input: An undirected graph G = ( V,E ) represented by
adjacency sets foreachv; e V

Output: A partition of E into a set T of tree edges.

Stepl:letv; =1
Step2: for all w; that lies in the adjacency list of v;
and not yet numbered ;
construct v; -»w; and number them.
Step3: choose one of the new w; say v, ;
then v; = w,

Step4: if there is an unnumbered vertex yet then go to Step 2.

To illustrate this search technique, the same example used for illustrating

the depth-first search, is redrawn in Figure 2.2.
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Figure 2.2 : Breadth-first search (a) G = (6,7) (b) BFS tree with numbers in [ ] denotes

the order of vertex exploration

Let us start at vertex 4, and give it number 1 as shown in the figure.
Both B and F vertices are adjacent to 4; so we will number them by 2 and
3 respectively. From the up-to-date vertices, let us choose B so as to be the
next v. At B we will look for the remaining unnumbered adjacent vertices
where there are three of such vertices: C, D and E; number them with the
numbers 4, 5 and 6. At this step, the number that we reached is six and
equals the number of vertices for the whole graph, and since each vertex can
be explored only and only once; so the search should terminate since all
nodes where explored. However, as we can see, not all of the edges where
explored; such as the edge connecting both C and D or that connecting E
with F, drawn in Figure 2.2 as broken lines. Naturally, a simple modification
may be made if one wants to investigate edges of such type so as to get two
types of edges: fronds and back edges, as the case in depth-first search.

It is easy to show that the time required by a breadth-first search is in the

same order as that required by a depth-first search which is linear, not
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exponenh'al, in the size of G Thls l's usua"y the besl ﬂlat one can éXDEC[
from a graph algorithm, since it is reasonable to assume that each vertex and
each edge must be processed. However, one search technique may be
preferable over another, that is, it may give us a more efficient
implementation. For example, breadth-first search is usually used where
shortest-path routes are needed, since it travels through the minimum
number of edges and/or nodes on the contrary of the case in depth-first
search. On the other hand, depth-first search may be best used in
connectivity problems that are of the deterministic type of reliability

problems.

2.4 Backtracking:

Backtracking is an important method that should be utilized so as to best
utilize search methods including both depth-first and breadth-first search
methods. In depth-first search we may reach to a vertex that hasn’t any
unexplored edges incident with it, while still the graph is not completely
explored. An example of this case is when reaching vertex D in Figure 2.1.
There was no new incident edges while still edges (B,E) and (E,F) where
unexplored. At this case we should backtrack our previous walk and return
to the previously numbered vertices with the last being the first in
backtracking, where at each vertex an adjacency list is checked if any new
incident edges where found, in that example, we returned to C then to B for
which edge (B,E) was incident.

While our previous discussion was restricted to depth-first search,

backtracking is also important when used together with breadth-first search,
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especially when the shortest path is required. The followmg is a

backtracking algorithm for finding a shortest-path between two terminal
points: source (s) and destination (7).

Input: A directed graph (resulted from the breadth-first search)
with distance of each vertex from the source is known.

Output: Backtracking tree ( from # to 5 )

Stepl: set i = d(t) and assign v; =1t
d(t) is the distance of vertex (f) from the source (s)
Step2: find a vertex (1) adjacent to v; and with d(u) = i-1
assign vy = u
Step3:if i=1, stop

else decrement / and go to step 2

Let us discuss the same previous example which we searched using
breadth-first search and let the source, s to be node A while the destination, ¢
be vertex D, noting that at this special case, shortest s-f path, a slight
modification should be made on the graph numbering that finds the distance
d(v; ) with dfs} = 1, then vertices adjacent have d(,) = 2, etc. As can be
seen in Figure 2.3, d(t) =d(D) = 3 .

DB]  gq

cl3)

F{2]
B[2]

all]

Figure 2.3 : A directed graph as a result of BES, number in [ ] is the distance of the node

w.r.t node A
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Following the algorithm above we want z adjacent to 7 or D with d(u) = 2

which is vertex B , then assign v; =B which has an incident edge that leads
to vertex A of d = 1 which is the source, i.e backtracking terminates and the
path followed from D to A was D—B—A , which is a shortest path that has
the minimum number of edges.

Hence, backtracking algorithm carries out a systematic search, looking for
solutions to some problem and it allows one to find the way through the
network without danger of going round and round in circles.

In our study we utilized all the three previous algorithms with some
modifications that may simplify solution or save time. We propose two
algorithms ALG] and ALG2. The former depends thoroughly upon depth-
first search together with the help of backtracking. In this algorithm depth-
first search is utilized to look in the given network to check if a connection
is found between all the k-terminal nodes. If yes then no need to continue in
the search, and a decision is made to be connected. In the latter one,
breadth-first search was used where we take the first k-terminal node of
interest then we find the shortest-path between it and the next k-terminal
node. If a path exists then the recently reached k-node is considered to be
the new source while the next k-node is the destination and backtracking is
done, and so on until ensuring the connection of all the k-terminals of
interest, then the decision is made to be connected. If at any stage, no such

path exists, then the decision is made to be disconnected.
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2.5 Reliability Evaluation : General Survey

Many algorithms were published to solve the k-terminal reliability
problem, most of them depend on evaluation of reliability polynomial,
utilizing reduction and factorizing theorems. (Wood,1986) states a recursive
factoring algorithm for exact computation of this problem, and it applies the
formula:

Ry(G) = p;R(Gx *ei ) + qi R(Gk-ei)

pi =1 -g; =reliability of edge e;

Gy *e; = Gy with edge e; being contracted
Gy - e; = Gy with edge e; being deleted
Ry(G) = The k-terminal reliability.

A contraction of an edge means to unify both the end vertices of that edge
in one vertex while keeping all edges incident to both vertices as incident to
the new vertex.

Although other algorithms may have differences, such as that found n
(Baily and Kulkami, 1986), Wood algorithm follows the main general
- procedure and hence we will take it with more specialty. The main idea is to
begin with some graph, then do any possible reductions and/or factoring
keeping in mind that every alteration on each graph has its equivalent
variation in the reliability polynomial of the original graph. For example, if
two edges e, and e; are parallel, i.e they have the same end vertices, then
both of them may be replaced by just one edge e. suchthatp, = 1 -q, g5 . If
they are in series, i.e they have one common vertex that is of degree two
then they may be replace'd' by an edge e, such that p. = p, pp. There are

many other types of reductions, such as degree-2 reduction, polygon-to-
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cham reductions, bridge eonlraction, daproa-3 reduction, cfc. (Resendc,
1986), (Page and Perry, 1994).

To get a clearer idea, let us discuss the example discussed by Wood,
redrawn in Figure 2.4, from which we can state the k-terminal reliability,
with k£ =2 by the following relationship:

R (G) = ps [(I- 93 95)(1- 91 q2)(1- 96 q7) + 43 95 (P1 P7 +P2P6 - P12 P6 P7
)1+ qalp1 ps + p2 - p1 p2 ps ][ Psp7 + Ps-Pspspr]

1 A 7

-2

- 3
/facuk

1j52? /N 4
2 6 2 6

reduce

reduce
[
1 7
, o——&
7 V%
factor
.Q\)Q.1 : 430
2 6 2 6
reduce reduce
o—o ® ®

Figure 2.4 : Reduce and Factor Process
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Hence, the exact A-terminal reliability is found, However, there is an

important point to note, that is the process of factoring and reduction may
result in a different tree if the edge, say ey, is not chosen to be contracted
and deleted in the first step, and hence the number of factorizations may also
differ. This imposes on us to use some strategy to determine the best edge to
contract that results in minimum number of leaves in the search structure, i.e
that minimizes the number of factorizations needed.

Another similar algorithm is that published by Page and Perry, which
uses the factoring theorem to find the k-terminal reliability. We will name it
as PRFA for future references (Page and Perry, 1988).

However, even if a program takes into its account all reductions mentioned
above, with an optimum choice of the edge to be contracted, it is still not
general, i.e it cannot be applied to all possible topologies of networks. Also,
it cannot be used for large networks since it may take long time periods to
find the reliability, if it can be found. Hence the need for another method,
although may be not exact, that can be general is of special importance, and
this is the goal of our work.

(Ayoub and Shahbaz, 1996) illustrates an algorithm, called MAP, that
deals with a probabilistic graph of N nodes and L links, link /; fails with
probability p; . In the following is a brief description of the methodology
used in this algorithm.

Given a graph G, its nodes and links are first numbered in a certain order.
The links are split and numbered into those of a spanning tree Gr, and those
remaining are extracted from G as follows: as nodes are numbered from 1 to
N, the links of Gy are numbered /; ; i = 1, 2, ..., N-1 such that f{7;) < and #(7;
) =i+ I. When a numbered node is reached that does not have an adjacent
node, he backtracks through the numbered nodes until a node that has an

adjacent node is reached. As the Nth node is numbered, N-{ links of Gr are
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also numbered. The case f{I; ) < i occurs only when #(/;) is selected after

backtracking. The remaining links of G are numbered arbitrarily /;; i = N,
N+1, ..., L. Forthe sample network G;, the sample state vector X; = {/ ,
Iy, ..., Iy }is generated.
Before stating the MAP algorithm, let us clarify some notations used in it.
p = number of components in G;
g[n; ] = the component that node n; belongs to
6f g; ] =number of nodes in component g;

J:), t{l; ) = end vertices of edge /;

Input: State vector of sample G; (X;)

Output: k-terminals are all in one component or not

Step0: initialization
p=Lelfli)]=1,6g]=1i=1
Stepl: (phase 1) if (/;) is up
glt:)] = glft:)]
(gl f0:) ] = Qlglfti)]] + 1

Step2: if (/;') is down
p=ptl
gltli)] = g
0l g ]=1

Step3: i=i+1

if i< N gotostepl

if i=Nand p¥],gotostep9

ifi=Nand p> 1, gotostep 4
Step4: (phase 2) T/ g] =g« ; k=1, 2, ..., p (Define tables)
Step5: if /; 1s down go to step 7

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



18

S=T[glfl:)]]

B=TlgluL)]]
ifS =B gotostep 7
Step6: o/S] = 6/S] + 6/B]
g/B] =0
form=12.,p-1
if 7/ gm]= B, setT[g,]=S
p=p-1
Step7: i=i+1
if i <L gotostep5
Step8: fornodeswn;,i=1I, 2, ... N
glnij=1[gd]

Step9: check if all the k terminals lie in one component
ifyesthen &X;) =0
else X)) =1
Stop.

The last algorithm that we will discuss here is the Modified Dotson
Algorithm (Yoo and Deo,1988) which is a terminal-pair reliability algorithm,
a special case of the k-terminal reliability problem. In this algorithm the
network is modeled by an adjacency matrix, then the breadth-first search is
employed so as to find the shortest paths between the source and
destination. A reliability polynomial is derived next and used to calculate the
terminal-pair reliability. The vertices are numbered from 1 to n» and edges

from 1 to m, the network is represented by its adjacency matrix.
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Chapter 3
PROPOSED RELIABILITY ALGORITHMS

3.1 Assumptions:

As mentioned previously, computing the reliability of a generic network
1s computationally difficult, and an exact solution is unattainable for many
problems. Faced with this computational difficulties some assumptions are
usually considered so as the reliability evaluation methods become

applicable. The work developed in this thesis will also take into account

these assumptions, which are:

- The location of each network node 1s given
- Nodes are perfectly reliable

- Each p; is fixed and known

- Each link is bi-directional

- There are no redundant links in the network

- Links are either operational (up), or failed (down).
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- The fathures of links are mutually statistically independent

- The k-terminal set is specified.

However, there is still another problem which is unattainability of exact
solution for many problems. Moreover, the long computational time is
another problem. Faced with this problem, we should look for an estimate of
the reliability measure that gives an accurate, although not exact, value
computed in short time period while keeping the used methodology as
general as possible. This apprach is followed in this thesis.

After stating the above assumptions, some notations that are used in our
discussion must be presented next. These are
G = (N.M) = The graph to be investigated with N nodes, or vertices, and M
links, or edges.

K =Number of terminals in the k-terminal set.
Rx(G) = The k-terminal reliability.

pi = Reliability of edge e; .

NS = Number of executions or samples.

ns = The sample number ( variable )

¢ = Result of the ns search ( vaniable)

phi = Counter of connected samples ( variable )
GS = Sample network ( variable )

NS, ns, ¢, phi, and GS are explained more in the next sections.

3.2 Monte Carlo Simulation :

One important method of simulation is the Monte Carlo simulation. In this

method, to calculate the reliability of a network, a number of executions,
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called samples, is done for the original network taking into account

probabilistic variations. In other words, for each execution, random errors,
whose percentage depends on each specified edge reliability, are generated
leading to a new network that may have different number of edges and
hence different topology. For this sample network we want to check if our &
terminals of interest are connected by at least one path of working edges or
not. If yes then this sample network results in a connected graph and hence
the number of connected samples is increased by one. Otherwise then the
number of unconnected samples is incremented by one, and so on until
sufficient number of samples is taken that gives a sufficiently accurate
reliability measure.

A single execution represents only one of the many possible pathways in
the model. Thus for a single execution we have no way to tell whether the
result is an extreme case or about average. Repeated executions of the
simulation provide distributions of values at each state and a distribution of
pathways. From these distributions we can infer what the averages, the
extremes and the shapes of the distributions if they were of our interest.

How reliable are the estimates we make from a limited number of
executions? Two executions may give us a great deal more information than
a single execution. One hundred executions may give us hints of the
extremes and of the shapes of the ultimate distribution. A thousand
executions may give us results that approximate smooth curves, but a second
thousand may give different curves. These possibilities raise the very
practical question: How long should we run a simulation model? If we
continue executing the simulation process, we hopefully will get, after some
number of executions, some results that will be fixed around some
asymptote. Hence one may do number of executions that are larger than

recommended and then starts to lower this number to minimize it while still
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giving results within the specified accuracy and/or a sufficient specified
form (Barton, 1970).

A sufficient number of executions needs a stopping criteria. Such a
criteria may depend on the accuracy, i.e when the difference between the
approximate value and the exact one is less than some pre-defined error.
This method needs to know the exact measure which is not always available.
Another criteria depends on the shape of variations in the estimated
measure, i.e. it compares between successive estimated measures and if the
differences between them is within a specified value then it stops executions.
In mathematical terms:

Ry (m+n) - Ry (m) <dj

where d; is an appropriate fraction that indicates that the estimated
reliability measure is almost constant and any additional executions may not
add new information of substantial importance. The value of may be any
integer greater than or equal to one. In some cases the percentage change is

calculated to serve as a stopping criteria, using the following equation:

R, (m+n)— R, (m)
Re(m+n)

<d,%

In our work, for each sample done, a random number is generated for
each edge in the sample. If this number is higher than the reliability of that
edge then it is considered to be a failed connection. Otherwise, nothing

happens for that specified edge. The search procedures are utilized next to

check the connectedness of the k-terminal nodes. One important point here

is that each sample network is statistically independent of other sample

networks .
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After doing sufficient executions then the A-terminal reliability is simply

the mean of the probability distribution Y(ns) on NS. Then consider NS as
an urn from which a ball ns can be drawn with probability p(ns). Now let Z

denotes the mean value of the random variable Y{ns) where

¥ i z(ns)
"= L)
and
Z= Yzns)= 3. pns) z(("s)) E{7}
ns=1,.,. NS ns=1,.,NS

The varniance and coefficient of vanation of Y are

var{Y}= 3 p(ns)¥*(ns)- E*{}

ns=1, NS

5} = \/ IZ:NSi’("j;il’y}z(ns)

From basic statistics, for N statistically independent choices from NS with
probabilities p(u); we have an unbiased estimate of E{Y}. Hence the

reliability measure is found by the following equation
=L 5 yns)
Nm':l
with variance and coefficient of variation being equal to (Elperin, Gertsbakh
and Lomonosov, 1991)

Var(F,} = ~-Var (1

0
8, =
s’m

All previously published results utilized graph searching techniques other

than the depth-first and the breadth-first. Our proposed algorithms in this
thesis are the first to use these two techniques in the k-terminal reliability

problem.
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J.J ALGORITHM 1, ALGI

This algorithm depends thoroughly on the depth-first search with the aid
of Crude Monte Carlo simulation. Before discussing the specifics of this
algorithm, let us take a look at the headlines of this algorithm shown by the
flow chart m Figure 3.1.

The first block is concerned with the mathematical representation of the
graph to be studied. The network under study should be presented to the
program in the adjacency- or connection-matrix representation. Hence
programs that convert from f¢ representation and/or incidence-matrix
representation to the connection matrix representation were written and are
given in Appendices 1 and 2 respectively.

Why to use the connection matrix representation instead of the others?
There are three points of considerations that make this choice be desirable,
First, it uses the smallest dimension (VxJ) among other matrix
representations. For the incidence matrix the dimension is (VxE), where
usually the number of edges E is greater than the number of vertices V.
Hence the connection matrix is smaller in size. This smaller size leads to a
lower number of locations to be searched in the search process and hence
less time spent during each execution. The binary nature of the connection
matrix makes it the optimum choice when considering the memory size with
respect to all other matrix representations. The f-f representation deals with

two arrays each of length E and entries that may take values from 1 to E.

Thus, the required number of bits depends on E, while in a connection

matrix each entry requires just one bit and hence saving memory space.
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Figure 3.1: Flow chart for ALG1
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Another attractive characteristic of the connection matrix is its Symmetry

around its diagonal. This characteristic feature enables us to get all the
information about the network under study from less than half of this matrix.
Only the entries that lie over the diagonal of the connection matrix are read
since the entries in the lower half are just a mirrored image of the upper
one. This lowers the number of entries to be investigated during each
execution run, and hence execution time. This property reduces the number
of investigated entries from VZ to V(V-1)/2 .

The second block in the flow chart of Figure 3.1 works as a counter to
maintain for the number of samples or executions. The third block generates
a sample network for each execution; that is, it takes every edge in the graph
G, and generates a random number p for it. If this p is greater than or equal
to the reliability of that edge p; , then it is considered a failed edge, or down,
otherwise it is considered to be connected or up. This operation is done for
all edges in G resulting in a new network that have the same number of
vertices but possibly different number of edges. We call this network a
sample graph GS.

After generating the sample, a test should be made to see if the k-terminal
nodes of interest are still connected with each other or not, in spite of the
deletion of some edges. This is what the fourth block does. It utilizes the
depth-first search method to do so. It starts with a vertex that belongs to the
k-terminal set then continue to search until all k-terminal nodes are explored,

or no path is found to connect them. The former case leads to a ‘connected’

decision, while the latter leads to a ‘disconnected’ decision. A ‘connected’

sample assigns the value one for ¢, while a “disconnected’ sample assigns a
zero value for it, and hence no change in phi.
This procedure constitutes one execution run, which is a point in the NS

execution points. Another execution run is done, and so on to accumulate NS
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points. Afler doing all NS exccution runs, the -trminal reliability i the

value of phi divided by the number of samples NS, and hence the reliability
measure is estimated.

One further point that we did not mention in the previous discussion, that
is the utilization of backtracking method, if needed, in the search process.
Backtracking technique is used to avoid looping and hence decrease the
search time.

After this general look, we will take an example and discuss it
numerically. We will use the network shown in Figure 3.2, and do two
samples that are generated by the computer to sce the results. The

connection matrix of G 1s:

0 1 o 0 O 1 o o0 0
1 0 1 0o 0 0 1 1 0
0 1 0 1 0 0 0 1 1
G= 0 0 1 0 1 o 0 o0 0
0 0 0 1 0 1 0 0 0
1 0O 0 0 1 0 1 0 0
0 1 o o0 O 1 0 1 0
0 1 1 0 0 0 1 0 1
| 0 O 1 o o0 o0 0 0_]
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Now, and after specifying GS. a search 1s done. [t starts at the k-termmal
that holds the name v; and the k-terminal counter counts one, starting at
adjacent vertices. It continues to v, then v; and vs. At vg there is an edge
that leads to an ancestor which is constructed then it continues to vy , vs
and vs ; there is no adjacent vertices found so far hence backtracks to vs
from which an edge that leads to vy is found. Since vy is a k-terminal node,
the k-terminal counter is incremented. Now no adjacent vertices;
backtracking is done but it does not help since there is still another k-

terminal v, that is isolated from the others. Hence the result is a

disconnected decision, i.e. ¢ = 0, and the value of phi is not incremented.

O not a k terminal

.k terminal

(a) (b)

Figure 3.3: ALGI solution for a sample network (a) Sample network, GS.
(b) Search tree.

The second sample to discuss deletes edges 1, 4, 5, 8, and 13 assuming
that all of them are down, resulting in GS shown in Figure 3.4 and

represented by:
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o 0 o0 0 1 0 o0 0

1 0 0 o o0 0 O

1 0 0 0 1 1

o 0 o0 o0 O

GS = o 0 o0 O
1 0 0

1 0

1

O not a k terminal

.k terminal

(a) (b)

Figure 3.4: ALG! solution for a sample network (a) Sample network GS.
(b) Search tree.

The search starts at v; , the first k-terminal to be explored, and hence the

k-terminal counter counts one. Then through the depth-first search method, it
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continues to vs, v7, vg and v3. Then, from vertices adjacent to v3, v, is

chosen leading to a point where no new adjacent edges are found so we
backtrack to v;. At v; edge (3,4) leads to a k-terminal, hence the &-terminal
counter is incremented. Then we backtrack to v; from which we go to v, ,
the third k-terminal of interest. The 4-terminal counter is incremented a third
time and is checked for reaching its limit, which is three for this example.
The program is then terminate the search, although some vertices may still
be unexplored, and give a ‘connected’ decision, i.e. ¢ = 1. The value of phi
1s now incremented by one.

Note that if we take a quick look at GS in the second sample, it tells us
that the graph is disconnected since vertex vs is isolated from the whole
graph. However, the search gave a connected decision since we are
interested in terminals v; , v4 and vy only and all these three vertices lie in
one component, Hence the decision was ‘connected’ after the search was
ended.

These two samples are just examples contributing some information about
the reliability of the set of k nodes. The computer continues to do the NS
execution runs given the required accuracy of the reliability estimate, in
possible finite time duration.

Now, after discussing this algorithm, we will present it in a formal

manner to simply writing it as a computer program.

Input: An undirected network with a known reliability p; for each edge.
Output: The k-terminal reliability Rg (G)

Step0: initialization
0 — ns, 0 — phi

Stepl: enter the connection matrix of the network.
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SIEpL: nstl - s
generate random number p for each edge e; inG
if p2>p; thenassume e; tobe down
else e; 1sup
Step3:0—>i,0>k,1—>no
select a k-terminal to be w(l)
Step4: wino) > v
no+1— no
if v is one of the k terminals
then k+1 = k
if k=K then go to step 7.
Step3: construct all v-—w; arcs
Step6: construct single v—w;
if possible then w; —w(ho) , go to step 4
else then backtrack until finding an appropriate w(i)
if possible then w(i)—v , go to step 6
else go to step 8.
Step7: phi+ 1 — phi
Step8: if ns < NS go to step 2.
else (phi/ NS) = Rg (G)
Stop.
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34 Algorithm 2, ALG?2

This algorithm utilizes the breadth-first search together with Crude Monte
Carlo simulatton so as to estimate the k-terminal reliability . The flow chart
of this algorithm is shown in Figure 3.5. It looks similar to that of ALGI,
however the following discussion will show the differences.

The first three blocks do the same job as that of ALGI. The graph is
entered in the connection-matrix form then simulation is started. The
variable ns works as a counter, and each generated sample is saved in GS.
The fourth block does the search process that will determine whether the &
terminals are connected or not. It starts at the first node in the k-terminal set
and searches for a path, if any, to the second node in the k-terminal set. If a
path exists it continues to the third node in the k-terminal set, otherwise the &
terminals do not lie in a single component and hence the decision is made to
be ‘disconnected’. Note here that there is, in 2 way, a priority in the search
pattern and this priority is given for the & terminals of interest, a way that
may, in some cases, save time and increase efficiency in the computer
program.

The chart continues to operate with its eight blocks similar to ALGI. The
details are best explained by the use of numerical example. Let us take the
same example solved by ALGI in Section 3.3, redrawn here in Figure 3.6.
We will use the same connection matrix G. In this figure, the search trees
are drawn assuming no failures in the network.

The first tree is built by finding a path between terminals one and four.
Since it is connected then the search between nodes four and nine is done

next, and the decision comes out to be a ‘connected’ k-terminal nodes.
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Figure 3.5: Flow chart for ALG2
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Now let us take two samples to be simulated by the computer program.

The first sample assumes edges 3 and 4 failed, resulting in the sample
shown in Figure 3.7(a)

The search tree followed by the computer program is shown in Figure
3.7(b). It starts at vertex v; , the first node in the k-terminal set, and looks for
the second k-terminal v, . There are two adjacent vertices for vertex v; ,
namely v, and vs. They are numbered and the computer then chooses v, to
be the next node v. It has v;, v; and vg as adjacent nodes. Then the new
edge that should be constructed is (6,5). After finishing this level the next v

will be v; . Then from vertex v;, the only adjacent vertices are vs and v.

O not a k terminal

.k terminal

(a)

{b) (c)

Figure 3.6: ALG2 solution for a sample network (a) k-terminal reliability problem

(b) Search tree between 1 and 4 (c) Search tree between nodes 4 and 9
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O not a k terminal

.ktcrminal

Figure 3.7: ALG2 solution for a sample network
(a) Sample network, GS (b) Search tree.

So far the required vertex whose number is four is still not found; while
all possible vertices were numbered. This case cannot occur except if that
vertex lies in another component leading to the ‘disconnected’ decision. The

decision was made without any need to continue to check the connections

between other k-terminal nodes, a point that may result in a shorter
execution time,
The second sample to discuss assumes that edges 1, 4, 5, 8 and 13 have

failed resulting in GS shown in Figure 3.8(a)
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O not a k terminal

.k terminal

(a)

(b) {c)

Figure 3.8: ALG2 solution for a sample network
(a) Sample network, GS
(b) Search tree between 1 and 4
(c) Search tree between 4 and 9

At first, the program checks if a path exists between nodes one and four,

the first two k-terminal nodes. The search tree is drawn in Figure 3.8(b),
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leading to the ‘connected’ decision. Tha cecond step i8 to check 1f 2 path

exists between nodes four and nine, the last k-terminal nodes. Hence another
search tree is built shown in Figure 3.8(c). Since all the A-terminal nodes are
reached then a ‘connected’ decision is made leading to the assignment of
valuec one to ¢.

These two samples are just examples, to show how the program proceeds
when attacking different situations. The computer program continues in the
same manner until the required number of samples is reached giving a
sufficient and accurate estimation of the network reliability.

The following pseudo code represents , the ALG2 algorithm:

Input: An undirected network with a known reliability p; for each edge.
Output: The k-terminal reliability Rg (G)

Step0: initialization
0 —>ns,0— phi
Stepl: enter the connection matrix of the network
Step2: ns+1—>ns,1 >no
generate random number p for each edge ¢;in G
if p 2p; then assume e; to be down
else ¢; 1s up
Step3: choose two k-terminal nodes and name them as s and ¢
Stepd: if t is adjacent to s then go to step5
else for all w; adjacenttos,
construct s—w;
if no such edge then go to step7

else choose w; —» s then go to step4

StepS: t > 5

. "‘
wl S td . SJI
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cliooge 4 new node from the k-terminal nodes and name it ¢

if all the k terminals are reached then go to stepb
else go to step4

Step6: phi+ 1 — phi

Step7: if ns < NS go to step2.

Step8: else (phi / NS) = Rx (G)

Stop.
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Chapter 4
RESULTS

Our two proposed algorithms were programmed in C language using
Turbo C++ compiler. A 100 Mhz PC was used to develop and execute
these programs. The two programs are shown in Appendices 3 and 4.

4.1 Algorithm Performance:

Seven networks were first examined to assess the algorithm performance
according to reliability measure, number of samples needed and time of
execution. For each network we took two different cases: one with a high
edge reliability p; that equals to 0.9, and the other one is taken for low p;
equals 0.4.

The seven networks were given the names : A; , Az, A3 , A¢ , As , As ,
and A;. They were created using a methodology of building networks for
which the input is the number of nodes N and the number of edges M, while

the output is a certain topology. For example, A; network is 4; (6,9) takes
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the topology shown in Figure 4.1. It distributes the nodes in a polygon form.

The first N edges are built to draw the polygon, then in the second cycle, the
edges are built to connect vertices 1 with 3, 2 with 4, etc. In the third cycle it

connects vertices 1 with 4, 2 with 5, etc., and so on.

Figure 4.1: A simple, undirected graph, 4;,=(6,9)

A program for building networks using this method was written in C
language is shown in Appendix 5. Using this method, we generated all the
A-networks: A4; (6,9), A; (10,15), Az (15,22), A4 (20,30), As (30,45), As
(50,75) and A;(70,103).
In the f-t form these networks are written as follows:

Ar =(69)
f=1[12345,6,123]
t=[2,3,4561345]

Ay =(10,15)
f=[1,2,3435¢67282910123,4,35]
t=/2,34567,829101 34,5 67]

A; =(15,22)
f=10123456,7,82910,11,12,13,14,151,2,3,4,5,6,7]
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(=[134356789101111135141,1747067737]

Ay = (20,30)
f=[1,23456782910 11, 12 13 14,15 16,17, 18 19,20, 1, 2,
3,4,56,789, 10]
t =[2,3,4,56789 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 3,
4567891011, 12]

As = (30,45)

f=[1,23 45678891011, 12 13 14,15, 16, 17, 18, 19, 20, 21,
22 23,24, 25,26, 27,28, 29,30, 1,2,3,4,5,6,7,8 9,10, 11, 12, 13, 14,
15]

t=[23.4,567809 10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23,24, 25, 26,27, 28,29, 30, 1, 3,4, 5,6, 7,8 9, 10, 11, 12, 13, 14, 15,
16, 17]

As = (50,75)
f=[12345678910, 11,12 13, 14,15, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 1,2, 3,4, 5,06, 7,8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 23]

t=[234,56,78910 11,12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 1, 3,4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

45 = (70,105)
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f=[1,2,3,4,56,7.89 10,11, 12,13, 14,15,16,17, 18, 19, 20, 21,

22, 23,24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63. 64. 65, 66, 67, 68,69, 70,1, 2,3, 4,5,6,7,8 9,10, 11, 12, 13, 14,
15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35]

(= 02345678910 11,12, 13, 14,15, 16, 17, 18, 19, 20, 21,
22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70,1, 3,4, 5,6,7,8,9, 10, 11, 12, 13, 14,
15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37]

As seen above, various network sizes were taken that spread from small
ones, like A;, to medium ones, like A4, to large networks, like A7.

The number of executions, NS, was also varied so as to investigate its
effect on the shape of variations in the reliability measure and execution
times. Table 4.1 shows the results for p; = 0.9, while Table 4.2 shows the
results for p; = 0.4. Here all the nodes are assumed to be & terminals, hence

we find the all-terminal reliability.
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Al A2 A3 A4
NS [Rk 1z |Rk 1|2 [RK v [z |Rk T
100 099 o0 © 089 o0 0 082] 0 o 075 o] 0
1000 0987 0 © 0922 o o o848 1] o 0754 0o 1
2000 0986 0O © 0935 o o 08415 1 1 07520 1| 1
3000f 0987 o o] 0935333 1| 1| 0840333 1] 1| 0.755333] 2} 2
4000, 0.98775| 1| o] o.93525| 1| 1| o.s84025| 2 2 0755 2| 3
5000 09862 1| o] 09334 1] 1 083 2| 2 0.7564| 3| 4
10000 09853 1] 1| 09335 2| 2| 08397 44 5 0.7608] 6| 7
15000 0.9832] 1| 2 0934 3| 3] 08396 5 6 0.7598| 9| 10
20000 09839 1 2| 093385 3| 4] 08395 7| 8 0.7608] 13| 13
30000 0.9839 3| 3| 0935767 5| 6| 0.839333 11] 13 0.7596] 18! 21
40000| 0.984125| 3| 4] 09372 7| 9| 0.840275 15| 16| 0.750725] 25| 27
50000 098386 4] 5| 093808 10| 11| 0.83928] 18| 21| 0.75978] 30| 34
AS AB A7

NS [Rk 1 [tz |Rk H |2 Rk 1 |2

100 06| 1| o 0.29 1 013 0 ©

1000 0591 1| 1 0.284 3 0141 6 6

2000 05635 3] 3| 02745 7] o0.1285 13 12

3000| 0.563333| 4| 4] 0283333 10| 10 0.129] 20| 18

4000 056475 5 5 0.28] 14 13 0.129] 26| 24

5000 0.5634] 7| 7 02717 17| 17 0.131| 33 30

10000 0.5631| 13| 14| 02768 35| 33}  0.1249] 66| 60

15000] 0.5684| 20| 20| 0.278467| 52| 50 0.125] 99| 90

20000 0.56775| 26| 28 0.28] 70{ 67|  0.1243] 132| 121

30000] 0.5675| 39| 41| 0.2822| 104/ 101| 0.126433] 198| 181

40000 0.56675| 53| 55| 0.28525| 139|134| 0.12755 264 241

50000 0.56864] 66| 68| 0.28378| 174|168] 0.12755| 331} 302

Table 4.1: Reliability and Time vs NS for A-networks, p; = 0.9 (Timeisin seconds)
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NS Al A2 A3 A4
Rk t1 |t2 |Rk t1 |2 Rk t1 2 |Rk 11
100 016/ ©Of O© 0.05 0 O 0.01 0 0 0 0 0
1000 018 0O © 0.025 o] O 0.002 0 1 0 1 0
2000 0162} 0] O 0.029 of 1 0.001 1 0 0 1 1
3000| 0.166667| 0Oj O 0.026 i 1 0.001 0 1 0 1 1
4000 0.168( 1] 1 0.026 o] 1 0.001 1 1 0 1 2
5000 0.1674] 0; 1 0.0248 of 1 0.001 2 1 0 2 2
10000 0.1746| 1| 1 0.024 2] 1 0.0011 3 3 0 4 4
150001 0.174467| 2| 2 0.0256 3| 2| 0.001267 5 4 0 6 &
200001 0.1758] 2| 2| 0.02585 3 4| 0.00125 5 5 0 8 8
30000| 0.176333| 3] 2} 0.026067 5| 5| 0.001167 8 8 of 12| 12
40000 0.176| 4| 4| o.02e0s| 6 7| o0.00125( 11| 11| 0.00005( 16( 16
50000 0.1751] 5| 5| 0.02622 8| 8| o0.00136] 13| 14] 0.00004; 21| 20
NS A5 AB A7
Rk t1 2 Rk t1 |2 Rk t1 2
100 0 ¢ 0© of of 1 0 1 0
1000 of 1 1 o 3 3 0 2 2
2000 o 1 1 0 0 5 4
3000 of 2 1 ol 10| 10 0 8 7
4000 o 3t 2 0 14} 13 o M 8
5000 o 3 3 of 17| 17 o 13| 11
10000 of 7] 6 o[ 35| 33 o] 25 22
15000 of 11| 9 0] 52| 50 0| 38 31
20000 0] 14| 13 o| 70| 67 0 51 43
30000 0] 21} 20 0] 104,101 ol 76 63
40000 0; 28 26 0] 139|134 0 102 &S
50000 0| 36| 33 0| 174|168 o| 127} 106

Table 4.2: Reliability and Time vs NS for A-networks, p; = 0.4 (Time is in seconds)

In Table 4.1 and all following tables; #; and ¢, correspond to the time

needed to find Ry by ALG! and ALG?2 respectively. Also, one single column

was written for the value of Ry since this value was obtained from both of
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the two algonthms. This 1 an expected result since same simulation method

was utilized in both algorithms.

_ALGI
-~ ALG2
pi=.9 pi=.9
1 - 5 .
0.981 =4
ho)
& 0.96} o
D2t
£
0.94} i
1 |
0.92 . : 0
0 2 4 6 6
NS x 10 NS x 10°
pi=.4
0.18 ' . 5
0.175| ;;;4'
he)
& 017 o
T 2t
E
0.165 =l
0.16 . ; 0
0 2 4 6 6
NS x 10° NS x 10°

Figure 4.2: Reliability and Time vs NS for 4;-network, for p;=0.9 and p,=0.4

Three cases of the tables above concerning small, medium and large
networks are plotted in figures 4.2, 4.3 and 4 4 respectively. For the curves
in Figure 4.2 and all following figures, the solid line corresponds to ALG/

while the broken line corresponds to ALG2.
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Figure 4.3: Reliability and Time vs NS for A,network, for p;=0.9 and p, =04

In all reliability curves, we can see that all of them may oscillate at
first, but after NS = 25,000 , the reliability measure seems to become
constant. So a good reliability estimate may be achieved by taking only

25000 executions. This is correct for both the low- and high-edge reliability
networks. Naturally, if the program continues to execute until NS
approaches c then the reliability estimated will be the same as the exact

one.
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Figure 4.4: Reliability and Time vs NS for 4 ~network, for p;=0.9 and p,= 0.4

Now let us look at time performance. For high edge-reliability networks,
and in large networks, ALG2 takes shorter times of execution than that of
ALGI. However, for small and medium networks, ALG/! shows a faster
operation. Table 4.3 shows the average value of the time taken for one

execution for various networks, of high edge-reliability:
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network tl )
Al 0.083 0.100
Ad 0.608 0.683
A7 6.610 6.030

Table 4.3: Time for one execution run for A-network , p; = 0.9 (Time is in milliseconds)

For low edge-reliability networks, ALG2 takes less time for all sizes of

networks. Table 4.4 shows the average time of execution for vanous

networks:
| network tl t2
Al 0.100 | 0.092
Ad 0.408 | 0.400
A7 2540 | 2.120

Table 4.4: Time for one execution run for A-networks, p; = 0.4 (Time is in milliseconds)

Now the B-networks are studied: B; , B;, B; and B,. These networks are
found in many published works, as they represent real networks. Figure 4.5
shows these four networks. These networks are concerned with terminal-
pair reliability. We examined these networks, assuming that the k-terminal
set includes only two terminals as specified in the figure. Results are shown
in Table 4.5. Note that we wrote the exact measures in the last row of this
table, together with the time needed to calculate it as found by PRF4
algorithm (Page and Perry, 1988) that is discussed later in Section 4.2.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



62

1S009g SS9y JO BIus) - ueplor Jo AlsiBAIUN JO AkeiqiT - PaABSaY SIYDIY |1V

(c)

(21,26) (c) Bs=(9,18) (cont'd)
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Figure 4.5: B-networks (a) B,
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Figure 4.5: (cont'd) (d) B, = (17,26)
NS B1 B2 B3 B4
Rk t1| 2 Rk 1| t2 Rk t1 t2 Rk 1 12
100 0.97 o) o0 0.95 0] 1 1 0 0] 1 0] 0
1000 0.973 0|0 0.916 1 1 1 0 0 0.997 0 0
2000 0.975 0} 1 0.922 111 1 1 0 0.9975 1 1
3000 §0.975667| O | 1 |0.917667| 2 | 1 1 1 0 0.997333 1 1
4000 [ 097325 | 0| 0] 09185 | 2| 2 1 0 0 0.99775 1 1
5000 | 0.9712 111 09172 | 2| 3 1 1 1 0.8978 1 1
10000 | 0.9704 211 0.9154 5| 4 1 1 1 0.9977 4 4
15000 10.969333| 3 | 2 {0911333( 8 | 7 1 3 2 0.9978 5 5
20000 09702 | 4 | 3 | 091155 | 10| 9 | 0.9999% 3 3 0.99815 7 7
30000 | 0.968367 | 4 | 4 ) 0.913233| 15| 13 | 0.999957 4 5 0.998233 11 | 11
40000 | 0.96845 | 6 | 5 | 0.91415 [ 20| 18 | 0.999975 6 7 0.9982 14 | 15
50000 | 0.96864 | 8 | 7 | 09137 | 25|23 | 0.99998 | 7 g 0.99816 17 117
Exact | 0.969112| 1 091291419 0.999971 | 4.5 0.998059 61

At RghtsReserved - Library of University of Jordan - Center of Thesis Deposit

Table 4.5: Reliability and Time vs NS for B-networks, pi=0.9 (Timeisin seconds)
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For networks B, and B, . the resulls are drawn in Figure 4.6, to show the

reliability and the execution time as a function of number of samples done,

NS.

_ ALGI
B1 --- ALG2
0.976 . . 8
ke
oy
3
& 0.972 Q4
rig
E
0.97!} =2t
0.968 : : 0
0 2 4 6
NS x 10
B2
0.95 - - 25
0.94 ;;-20'
o
§ 15}
z 0.93 o
o 10}
E
! =
0.92 V\\/\ 5}
0.91 . - 0 -
) 2 4 6 0 2 4 6
NS x10° NS x 10°

Figure 4.6: Reliability and Time vs NS for B, and B; networks.

The k-terminal reliability problem, which was stated in Chapter 1, and 1s
redrawn here in Figure 4.7, is solved and the results are shown in Table 4.6.

The corresponding curves are shown in Figure 4.8.
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Figure 4.7: k-terminal reliability problem, K, =(9,13), £=3

NS pi = .95 pi= 01
Rk t1 | t2 Rk 11 2
10 1 0|0 0 00
2000 0.991 0 0 0.001 0 1
4000 099175 | 1 0 0.0075 1 1
6000 0.9915 1 1 0.0005 0 0
8000 |0.991125) 1 1 {0.000375} 1 1
10000 | 09911 | 1 | 1 { 00004 | 2 | 1
12000 |0.990833| 2 1 {0.000417} 1 1
14000 |0.990714| 2 | 2 |0.000357| 1 2
16000 |0.990688| 2 3 | 0.000313} 2 1
18000 |0.990778| 2 | 3 |0.000278; 2 | 2
20000 | 09S065) 3 | 3 1000025} 3 | 2
22000 {0.990318| 4 3 10.000273| 2 3
24000 {0.989958| 3 | 4 { 000025} 3 | 3
26000 [0.989731| 4 | 4 |0.000269f] 3 | 3
28000 [0.989857| 5 | 5 {000025]| 3 | 3
30000 |0.989633| 5 5 {0.000233} 4 3
35000 |[0.989514| 5 | 6 (0.000229| 4 | 4
40000 }0.989525| 6 7 106.000225| 5 5
45000 [0.989556| 7 | 7 |0.000222] 5 { 5
50000 0.9897 8 8 | 000022] 6 5
60000 | 098965 | 9 | 10§ 000025 | 7 6
70000 05895 | 11 | 11 [ 0.000214] 8 8

Table 4.6: Reliability and Time vs NS for Kz-network,for both p, = 0.95 and p, =0.1,

k=3 (Timeisin seconds)
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Figure 4.8: Reliability and Time vs NS for K, network, , p;=0.95 and, p,=0.1

The average time of execution is similar to the charactenstics seen

previously. It is smaller for 4LG2 compared to ALG/ except for the case of
high edge-reliability networks. Table 4.7 shows the average time of one

execution run when solving for the reliability of K; network.
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pi tl 12
0.95 0.425 0.450
0.1 0.325 0.300

Table 4.7: Time for one execution run for K, network (Time is in milliseconds)

Now looking at Ry, for high edge-reliability networks, the last 11
values, in Table 4.6, as shown in Table 4.8 for the extreme cases only. An
increase in NS by 48000 affects Ry by only 0.083%. Therefore the
reliability may be accurately estimated from the table at NS = 22000 without

the need to go for additional executions.

NS Rk
22000 |.990318
70000 |.989500

Table 4.8: Two values of NS and the corresponding Ry for K network

(Time is in seconds)

Now, let us examine the results as a function of p; . First we fix NS at
30000, then vary p; , for networks A (medium size all-terminal problem),
B, (two-terminal problem) and K ( k-terminal problem). These results are
shown in Table 4.9, and the corrésponding curves are shown in figures 4.9,

4.10 and 4.11 respectively.
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pi K2 A4 B2
Rk 1| @2 Rk T Rk t1 | t2
0.001 0 4 3 0 10 9 0 9 8
0.1 |0.000233( 4 3 0 101] 9 0 9 8
0.2 0.004 3 4 0 10 | 10 |o0.000267| 10 | ¢
0.3 |0.022867| 4 3 0 11 | 11 [0001733| 10 | 9
0.4 0.0837 | 4 4 0 12 | 11 |0010033| 12 | 9
05 |0.208767| 4 5 10.002533| 14 | 14 [0.042533] 13 | 10
0.6 |0.403633| 4 4 | 00257 | 16 | 16 |0.138433| 14 | 11
0.7 |0627067} 4 4 | 012033 | 19 | 19 |0.339833| 15 | 12
0.8 |0.825033| 5 5 |0.383267| 19 | 20 {0.644667| 15 | 13
0.9 0.956 5 4 } 07596 | 19 | 20 |0.913233} 15 | 13
0.999 1 4 5 |0.999967| 15 | 17 1 17 | 14

Table 4.9: Reliability and Time vs p, for K>, 4, and B, networks

(Time is in seconds)

The average time of execution is smaller for low edge-reliability networks.
This is an expected result since a ‘connected” decision cannot be taken until
all the k-terminal nodes are scanned. Results tabulated above also agree with
relationships between the time of execution and NS for low and high edge-

reliability networks, as mentioned earlier concerning both ALG! and ALG2.

4.2 ALGI1 and ALG2 Vs Previous Studies :

In this section, results for both ALG! and ALG2 are compared to the
MAP algorithm (Ayoub and Shahbaz, 1996) and the PRI"4 algonthm (Page
and Perry, 1988). The former one is used to solve the all-terminal problem in
the A-networks. It finds the probability of failure F(G), and consequently
R(G):

R(G) = 1 - F(G)
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Time of sim. vs pi, A4 / NS=30000
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Figure 4.9 : Time vs p; for A, network.
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Time of sim. vs pi, B2 / NS=30000
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Figure 4.10: Time vs p, for B; network.

Table 4.10 shows a companson between ALGI and ALG2 with MAP
according to the value of Ry and the execution time needed. These results
were taken with a fixed NS=30,000 for a p; equals to 0.9. In this table; 7.4,
corresponds to the time needed to find F(G) by MAP algorithm as found by
the authors of (Ayoub and Shahbaz,1996).
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Time of sim. vs pi, K2 / NS=30000
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edge-reliability, pi

Figure 4.11: Time vs p; for K network.

While the value of the reliability approximately the same, Figure 4.12
shows the big savings in time due to the use of our algorithms compared
with that of the MAP. This is expected since our algorithms do not search
the whole network in each sample. In addition, Figure 4.13 shows the
relationship between the time needed and the number of nodes in the A-
networks for the low edge-reliability case (p; =0.4). The shown curves when
interpolated may have a slope which is 50% less than that of the high edge-

reliability case. This indicates the power of the two algorithms in solving
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low edge-reliability networks, in contrast to all existing exact methods which

are weak in dealing with this special case of networks.

Network Rk R(G) map| 1 2 tmap
Al 0.9839 0.984 65
A2 0.935767| 0.984 5 6 122
A3 0.839333| 0.8399 11 13 196
A4 0.7596 | 0.7585 18 21 290
AS 0.5675 | 0.5695 39 41 667
AB 0.2822 | 0.2806 | 104 | 101 [ 737
A7 0.1264331 0.179 198 | 181 | 1035

Table 4.10: Reliability and Time vs N for A-networks, using ALG1, ALG2 and MAP

w

(Time is in seconds)

The PRFA algorithm is used to solve the exact value of the k-terminal
reliability problem for the B-networks, for the special case of k=2. Table
4.11 shows, for various values of NS, the values of Ry , while fixing p; at
0.9, and the difference between the exact and the approximate reliability
measures. the achieved accuracy can be easily seen in the reliability
measure.

Although the time needed by the PRFA algorithm may appear less than
that of our algorithms, we should not forget that PRFA has limitations on its
use. One of them is that it treats networks that do not have a large
number of vertices of degree greater than two (Page and Perry, 1988). In
contrast, our algorithms are general for any network topology. If we
compare it with the time needed to solve network By we can see that our
algorithms greatly reduce the execution time. The time taken to solve By
was 61 seconds in PRFA and the exact value was 0.998059. Our two

algorithms do 30000 samples in only 11 seconds to obtain an estimate value
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cquals to 0.998233 with a percentage error of 0.0174 %. This is a very

accurate result with a 80% saving in execution time. One can notice the
jump in the execution time between B; and By . Although By is smaller it

takes larger time due to the change of the topology of the network.

Time of sim. vs N, A-networks / pi=0.9

1200 T L T T T T
ALGI
o ALG?2 P
1000} T MAP ]
1/
/
800} s i
0 e
S 7
& 600} - _
é’ /'/
- /,
400+ / |
200} /'
o/
e
0 | t
0 10 20 30 40 50 60 7(

No. of nodes, N

Figure 4.12: Time vs N for A-networks, p; = 0.9
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Time of sim. vs N, A-networks / pi=0.4
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Figure 4.13: Time vs N for A-networks, p,=0.4.
NS B1 B2
Rk Rk-RK| t1 12 Rk Rk-Rk t1 2
20000 0.9702 | 0.00109 4 3 | 091155 | 0.00136 | 10 9
30000 |0.968367 | 0.000745( 4 4 10.913233]0.000319] 15 13
40000 | 0.96845 |0.000662| © 5 | 091415 | 0.00124 | 20 18
50000 0.9684 |0.000712) 8 7 0.9137 | 0.000786} 25 23
Exact | 0.969112 1 0.912914 1.8

60 7

Table 4.11: Reliability and Time vs NS for B, and B; networks, using ALG{, ALG2
and PRFA (Time is in seconds)
ALG2 seems to be faster than ALG/ here. This is due to the fact that it

does a single search between any two terminals following the shortest-path
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between them. ALG ! on the other hand, does not give any priorily [0 ”]e k—

terminal nodes.

4.3 All k-Terminal Reliability:

In this section we are dealing with a network, for which we want to find
the network reliabilities that result from all possible k sets. The network we
deal with here is the network we mentioned in Chapter 1, redrawn here in
Figure 4.14. We assumed that p; = 0.9. Results are tabulated in Table 4.12.

For example, the first row in Table 4.12 assumes that the k-terminal nodes
are nodes one and two. There are two values of NS: 20000 and 30000. For
the case of NS=20000, the value of Rx was found to be 0.9972, and the time
needed by ALGI was 2 seconds, while one second was needed by ALG2,
and so on. It is obvious that the number of k-terminal nodes may be 2, 3, 4,

5, 6 and 7. In this manner, the whole table was produced.

Figure 4.14: K;=(7,10)
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k-set 20000 30000
RK T 12 RK t4 12
1,2 0.9972 2 1 0.8997233 2 2
1.3 0.99535 1 2 |0.995267 3 3
1.4 0.97715 2 2 10.976933 3 3
- 15 0.97585 2 1 0.975067 3 3
1,6 0.99585 2 2 0.9958 2 3
1,7 0.9983 2 2 10.998233 3 2
2,3 0.9959 2 1 0.995967 3 3
2,4 0.97745 2 2 0977433 3 3
2.5 0.97555' 2 2 10975167 3 3
26 0.99545 2 1 0.9958 3 3
2.7 (.9985 2 2 {0.998533 3 2
3.4 0.97945 2 1 0.9794 3 3
35 0.9752 2 2 10974967 3 3
36 0.9938 2 1 0.9942 2 3
37 0.99695 2 2 0.9969 3 2
4.5 0.9779 2 2 0.9771 3 3
4,6 0.97785 2 2 0.9778 3 3
4.7 0.97865 2 2 0.9785 3 2
56 0.97795 2 2 |0.977467 3 3
57 0.97695 2 2 ]0.976367 3 3
6.7 0.99685 2 2 |0.997033 4 2
123 | 0.99425 | 2 2 |0994267| 3 2
1,24 0.97595 1 2 10.975867 3 3
1,25 0.9744 2 3 |0.973833 3 3
1.2,6 0.9943 2 2 | 0.994467 3 3
1,2,7 0.99705 2 2 0997033 3 3
1,34 0.97605 2 2 10.975867 3 K)
1,35 0.97335 2 2 |0.972767 2 4
1,36 0.99255 2 2 |0.992667 3 4
1,37 0.99535 3 2 |0.995233 3 3
14,5 0.966 2 2 |o.9ss5067| 23 3
14,6 0.9755 2 2 10975367 4 3
14,7 0.97M1 2 2 10.976867 4 4
156 0.97495 2 2 10974333 3 3
1.5.7 0.9756 2 2 10.974867 3 3
16,7 0.9955 3 2 ]0.995533 3 3
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130 TOMR] € | ¢ [owrsser] 3 773
2,35 0.9734 2 2 0.973133 3 3
236 | 0992 | 2 | 2 | 0993 | 3 | 4
237 | 09957 | 3 | 2 loesstaz]l 3 | 2
245 0.96595 2 2 0.965333 3 3
246 |o097s45| 2 | 2 |oorsess| 3 | 3
247 0.97735 2 2 0.9773 3 3
256 0.97455 2 2 0.974367 2 4
057 | o975 | 2 | 2 |oorsos7| 3 | 3
26,7 0.9954 2 2 0.9957 3 3
345 0.96675 2 1 0.9662 4 3
346 0.97565 2 2 0.975833 3 3
34,7 0.9776 2 2 0.977467 3 3
256 |oo73 | 2 | 3 |ooms | 3 | 3
35,7 0.9746 2 2 0.974167 4 3
36,7 {.9938 2 2 0.934067 3 3
456 0.96735 2 2 0.9667 3 3
457 0.8672 2 2 0.9656433 3 3
487 0.9767 2 2 0.976733 4 3
56,7 0.97595 2 2 0.975567 3 2
1,234 0.97495 2 2 0.9749 3 3
1,2,3,5 0.97225 2 2 09718 3 3
1236 |ogotas| 2 | 2 |osotes7| 3 | 4
1.2,3.7 0.99425 2 2 0.994232 3 3
1,245 0.9648 2 2 0.964 3 4
1246 |oora3| 2 | 2 |ooras| 3 | 4
1,247 0.97595 2 3 0.975833 3 4
1,256 0.9735 2 3 0.9731 3 4
1.2,57 0.97435 2 2 0.973767 3 3
1267 |ogss2s| 2 | 2 |ogoss | 4 | 3
1,345 0.9649 2 2 0.964 3 3
1,346 0.9744 2 3 0.9743 3 3
1,3.4,7 0.97605 2 2 0.975833 3 4
1,356 0.97245 2 2 0.972033 4 3
1,3,5,7 0.97335 2 3 0.972733 3 4
1.3.6,7 0.99255 3 3 0.992633 3 3
1456 0.9651 2 2 0.964333 3 4
1,4.5,7 0.86595 2 3 0.965 3 4
1467 0.97545 2 3 0.9753 4 4
1,566,7 0.9747 2 3 0974133 3 4
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5345 1006405 2 | 2 |0o6d%87] 3 | 3
23456 0.97445 2 2 0974667 3 4
2347 0.97635 2 2 0.976333 3 3
23586 0.9724 2 2 |0972333| 3 3
2,357 0.9734 2 2 | 0873067 3 3
2367 0.9926 2 2 10992933 3 4
2456 0.96495 2 2 0964533 3 4
2457 0.96595 2 3 0.965267 4 3
2467 0.97545 2 2 0.975567 3 3
2567 0.9745 2 3 0.974267 3 4
3456 0.96515 2 2 0964733 3 3
3457 0.96615 2 3 0.9654 4 3
3467 0.97565 3 2 0.9757 3 3
3567 0.9736 2 2 0.973367 4 4
45867 0.9662 3 2 | 0965633 3 3
1,2,34,5 0.9638 2 3 0.963033 3 3
1234586 0.9733 2 2 0.973333 3 4
12347 | 097495 2 2 0974867 3 3
1,2,3,5.6 0.97135 2 2 0.971067 3 3
1,2,3,57 | 097225 2 3 [0.871767 3 3
1,2,3.6,7 | 099145 2 3 (0991633 3 4
1,2,456 0.9639 2 3 0.963267 3 4
1,2.457 0.9648 2 3 0.963967 3 3
1,248,7 0.9743 2 3 0.974267 3 3
1,2,5,6,7 | 0.97345 2 3 0.973033 3 4
13456 0.964 2 2 0.963267 3 3
1,3.45,7 0.9649 2 2 | 0.963967 3 4
13,467 0.9744 2 3 10974267 3 4
1,3,56,7 0.97245 3 2 0.972 4 4
1,4,56,7 | 0.96505 2 2 0.964267 3 4
23456 0.96395 2 2 0.963567 3 3
234,57 | 0.96495 2 2 0.9643 3 3
2,3,46,7 | 0.97445 2 2 0.9746 3 3
2,3,586.7 0.9724 2 2 0.972267 3 3
2,4,56,7 | 0.95495 3 2 ] 0.964467 3 4
3,4,56,7 | 096515 2 2 0.9646 4 3
12,3456 | 0.9629 2 3 0.9623 4 4
1234571 09638 2 2 0.963 K} 3
123467 09733 2 2 0.9733 3 4
1.2,3,5,6,7 | 0.97135 2 2 0.971033 4 3
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124067 09099 | ¢ | 2 |0.963233) 3 3
134567 | 0964 | 2 0.963233
23,4567 | 096395 | 3 09635 | 3

3

1,2,3,4,56,7| 09629 3 |0962267) 3 3

Table 4.12: All k-terminal set for K, network (Time is in seconds)

The above table shows the extreme values of the k-terminal reliability of
K, network. For example, for the case of k=2, the maximum reliability
occurs when considering nodes 2 and 7 as the k-terminal nodes, while
minimum reliability occurs when considering nodes 3 and 5 as the k-terminal
nodes. This may aﬁpear to be different from our previous discussions, since
in our solution we were given the k-terminal nodes of special interest.
However, let us look at the problem from another point of view; where we
have an already built network and want to determine the optimum
distribution of some nodes that are of special interest. In such a case, the
table shown above is of special importance; it directs you to the suitable
locations for the k-terminal nodes so as to maximize the reliability.

If we want to add a new terminal to the k-terminal nodes, what are the
expected extreme reliabilities. From the above table, it is obvious that by
increasing the number of terminals in the k-set then the reliability will
become smaller, but how much will it be lowered? This table answers such a
question. Hence it would provide a helpfull tool whenever a designer wants

to design or do variations on existing network.
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Chapter 5
CONCLUSIONS

In this thesis, two algorithms ALG/! and ALG2 were stated to solve the -
terminal reliability problem using Monte Carlo simulation, based on two of
the main graph search methods. No published papers have used these
methods in this context. ALG/ utilizes the depth-first search, while ALG2
utilizes the breadth-first search techniques.

After doing sufficient number of simulations, an accurate estimate of the
reliability measure is found. At most cases, the sufficient number NS is
around 25,000, this is enough to give an estimate that is within a maximum
of + 5% of the exact measure. This accuracy may be increased further
simply by increasing NS.

We suggest a general solution to the A-terminal reliability problem without
imposing any restrictions. The assumptions, stated in Section 3.1, are used
by most of the reliability evaluation researchers. Our algorithms solve small,
medium and large networks, and obtain the reliability for cases with unequal
edge-reliability networks, and do not depend on network topology. Hence a

general solution is obtained for generic networks.
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This thesis treats the k-terminal reliability problem, whose £ differs from
the two- and the all-terminals problems and solves them. Previously
published literature is very scarce when addressing the general k-terminal
problem.

ALG! is suggested to be used in small high edge-reliability networks,
while ALG2 shows a faster operation for other types of networks. For the
case of terminal-pair problem, ALG2 is the best choice due to faster

operation irrespective of the size or edge-reliability of the network.
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Appendix 1:

f-t To Connection-matrix Transformer

I M= # of edges

1 N= # of nodes

I f.1*M t1*M

/ g:N*N

i/ prepared by. Wael H. Saafin

#include<stdio.h>

void main{void)

{
inti,j,M,N,f[100],{[100],g[100]{100];

M=6;

N=4;

printf(“fli} t[i]");

for (i=0;i<M;i++)
scanf("%d %d", &fTi], &t[i]);
for (i=0;i<M;i++)

{ali}{i]=0;
Qlfli-1It[i}-1)=1;
Qlti-11Ifi-1}1=1;

}

for (i=0;i<N;i++)
{printf("\n");
for (j=0;j<N;j++)
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Appendix 2

Incidence- To Connection-Matrix Transformer

I prepared by: Wael H. Saafin
#include<stdio.h>

void main(void)

{

inti,j,k,N,M;

int A[7][10].G[7]{7].9l2];
N=7; // number of nodes
M=10; // number of edges
for(i=0;i<N;i++)
for(j=0;j<N;j++)G[i][i]=0;
for(i=0;i<N;i++)
{for(j=0;j<M;j++) Ali][i}=0:}

Al0]{0]=1;
A[0][5]=1;
A0][7]=1;
AQO]=1;
ANE=T
A[1]i8]=1;
AZJ[1]=1;
Al2][2]=1;
Al2)[9)=1,
Al3][2]=1;
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A[83](8]=1:
Al4][3]=1.
Al4][4=1,
Al5][4)=1;
AlB][5]=1;
A[5](6]=1;
A[6][6]=1;
Al6][7]=1;
Al6][8]=1;
A[6][9]=1;
for(i=0;i<M;i++)
{ k=0;
for(j=0;j<N;j++)
{
f(ALIIT==1){glK]=};
K++;
}
if (k==2){G[g[0]]{a[1]]=1;
Glg[t]l[g[C]I=1;

goto NEXT,
}

}

NEXT:}}

for(i=0;i<N;i++)

{printf("\n");

for(j=0;j<N;j++) printf(" %d * G[il[]):
}

}
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Appendix 3
ALGI1

/I GRAPH A1 6/9
/I prepared by: Wael H. Saafin

#include<stdio.h>
#include<time.h>
#include<dos.h>
#include<stdlib.h>
#include<graphics.h>

void far clearviewport({void),
void main(void)

{

long int ns,NS,phi,phi1;
inti,j,no,v,.k1,p1,N,K.M;

int g[6](6],9s[6][6].w(E],

int f[9]={0,1,2,3,4,5,0,1,2};
int {9]={1,2,3,4,5,0,2,3,4};
int k[6]={0,1,2,3.4,5};

float r[6][6],p,Fk,ns1;

long float Pk;

time_t tt1,tt2,t3;

long float t1,t2;

/Il % g is the original network

Il % gs is the sampled network

tt1=time(NULL);

A
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N=6;

M=9; // # of edges
K=6;
ns=0;
phi=0; /
NS=300; // % # of samples
STEP1: //in this step the connection matrix is entered together with
// the probability matrix element by element
for (i=0;i<N;i++)
{ for (=0:j<N;j++){ glillil=0;
gs[i]{i]=0;
rlili}=-4:1
for(i=0;i<M;i++)
{if (T <thDolfItaN=1.
else gltfil][fi]]=1:
}
tt2=time(NULL),
STEPZ2: ns++, I/ Here a simulated version is calculated
for (i=0;i<N;i++)
{ for (=i+1;j<N;j++)
{if(glili)==0)gs[i]0]=gLli0l;
else{ p1=random(1000),
p=p1/1000.,
if (p>=r{i]i))gsli]0]=0;
else gs[i]{j]=gllI0];
}
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STEP3: //Begin the inspection process
i=0;
k1=0;
w[0]=k[Q];
no=0;
STEP4: v= w[no};
no++;
for (j=0;j<Kij++) {if(v==K[]{ k1++;
goto stepd1;}
}
step41: if(k1==K)goto STEPS;
STEPS: for (i=no-2,i>=0;i--)
{ if(v>wi(i]) {if (gs[wlil][v]==1) gs[W[i]][v]=0}
if(v<=w(i]) {if (gs[VIw[il]==1) gs[VI[w[i]]=0:}
}
STEPSG: for(i=0;i<N;i++)
{ if (v>i) {if (gsli]lv]==1) {w[no]=;;

gs{i][v]=0;
goto STEP4;
}
}
if(v<=i) {if (gs[v][ij==1) {w[no]=i;
gs[v](i]=0;
goto STEP4,
}
}

}
STEP7: // no adjacent edges
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for (j=no-2:>=01)--)
{ for (i=0;i<N;i++)
{if (gswlilJlT==1]lgslilw{i==1) { v=wl;

goto STEPS;
}
}
}
STEPS:// There is at least one cut in the graph
goto STEP10;
STEP9: phi++;

STEP10:printf("\n phi= %d",phi);
if(ns<NS) goto STEPZ;

STEP11:phi1=phi;

ns1=NS;

Pk=phi1/ns1;

Fk=1-Pk;
tt3=time(NULL);
t1=tt2-tt1;
t2=tt3-tt2,
printf("\n The propability of connection %f \n And of failure %f \n
" PKk,FK);
printf("The time taken for entering the network was %f" t1);
printf(" \n and for finding the Rel. was %f",t2);
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Appendix 4
ALG2

/I A1 6/9
// prepared by: Wael H. Saafin
#tdefine N6 // # of nodes
#define M9 // # of links
#define inf 9999 .
#include<dos.h>
#include<time.h>
#include<stdio.h>
#include<stdlib.h>
#include<values.h>
int s,t,Bool;
int gs[N][N];
void BFS(void);
void main(void)
{
long int ns,NS,phi,
int p1,1,j,no,i,kmax;
int g[N][N],gs[N]J[N]L.W[NJ;
float r{N][N],p,phi1,PK,Fk;
int d,dd,e,Bool;
int dist[N],pred[N],pp[MI;
time_t tt1,tt2,13;
float t1,t2;
int fO[M]={0,1,2,3,4,5,0,1,2};
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intt0M]={1,2,3,4,5,0.2,3.4},

int k1[6]={0,1,2,3,4,5},
tt1=time(NULL),
ns=0,
phi=0;
NS=50000;
kmax=6; // all the terminals are k-nodes
STEP1: // in this step the connection matrix is entered together with
/] the probability matrix element by element
for (i=0;i<N;i++)
{ for (j=0;j<N;j++X g[i](i]=0;
gs[iJfj]=inf,
ri0l=-4:3
for(i=0;i<M;i++)
{if(fofi]<to[iglfori)(tofi}]=1.
else g[to[i]][fo[i]}=1;
}
tt2=time(NULL);
STEP2: ns++; // Here a simulated version is calculated
no=0;
for (i=0;i<N;i++)
{ for (j=i+1;j<N;j++)
{if(alilb]==0)gsilli]=inf;
else{ p1=random(1000);
p=p1/1000.;
if (p>=r[i]{Dgslil{}=inf,
else{ no++,
gs[i]i]=no;}
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)
}

STEPS3: for (1=0;l<kmax-1;|++)
{s=k1[l];
t=k1[1+1];
STEP11: for (i=0;i<N;i++)
{ dist[i]=inf;
pred[i]=-1;
}
dist[s]=0;
d=-1;
STEP12: if(pred[t]!=-1)goto STEP14;
d++;
Bool=0;
for(i=0;i<N;i++)
{if(dist[i]==d) { dd=d+1;
for(j=0;j<N;j++)

{ if(gs[i][j]==inf && gs[j}[i]==inf)goto NEXT,;
if(dist[jj<=dd)goto NEXT,
dist[j]=dd;
pred[j]=i;

Bool=1;
NEXT:;

}
STEP13: if(Bool==0)goto STOP; //no path exists
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goto uTEP1E,
STEP14: /ifor(i=0;i<M;i++) pp[i]=0,
i=t,
STEP15:if(j==s)goto RETURN;
i=pred[j];
fle=gslil[);
/lpple]=1;
=
goto STEP15;
RETURN:;
}
STOP: if(Bool!=1) goto STEPS; //no path exists
STEP4:phi++; I/ connected
STEPS:
if(ns<NS)goto STEPZ,
STEP®S:phi1=phi,
Pk=phi1/NS;
Fk=1-PK;
tt3=time(NULL);
t1=tt2-t1;
t2=t3-1t2;
printf("\n The reliability is %fin prob of failure %f",Pk,Fk);
printf("\n The time taken for entering the network was %f ",t1);
printf("\n and for finding the rel. was %f ",t2);
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Appendix 5
Network Generator

/! note that the numbering here starts from 1 not zero
/ prepared by: Wael H. Saafin
{// m is the # of edges

/I nis the # of nodes
#include<dos.h>.
#include<time.h>
#include<stdio.h>
{#include<b.c>

void main(void)

{

float tt;

time_t tt1,tt2;

int f{200],4{200];

int h,m,n,i,j,k,mics;

tt1= time(NULL); //tt1 *timer),
printf("\n\n enter the # of edges (M) then the # of nodes (n) \n"};
scanf("%d %d",&m,&n);
h=m/n;

for (i=0;i<=h;i++)

{for (=1;j<=n;j++)

{ k=j+i*n;
fikl=j;
if(i+j<nitk]=i+j+1;

else tlk]=i+j+1-n;
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printf(" f[i] o
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\nn'm'n);

for (i=1;i<=m;i++)
printf("%d, “.fli});
printf("\n------- \n");
for(i=1,i<=m;i++)

printf("%d, ",{fi)

tt2= time(NULL); //t2 *timer);
tt=tt2-tt1,

printf("\n %f" tt);

}
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